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Abstract

Background: We have developed a high-throughput amplification method for generating robust gene expression profiles
using single cell or low RNA inputs.

Methodology/Principal Findings: The method uses tagged priming and template-switching, resulting in the incorporation
of universal PCR priming sites at both ends of the synthesized cDNA for global PCR amplification. Coupled with a whole-
genome gene expression microarray platform, we routinely obtain expression correlation values of R2,0.76–0.80 between
individual cells and R2,0.69 between 50 pg total RNA replicates. Expression profiles generated from single cells or 50 pg
total RNA correlate well with that generated with higher input (1 ng total RNA) (R2,0.80). Also, the assay is sufficiently
sensitive to detect, in a single cell, approximately 63% of the number of genes detected with 1 ng input, with approximately
97% of the genes detected in the single-cell input also detected in the higher input.

Conclusions/Significance: In summary, our method facilitates whole-genome gene expression profiling in contexts where
starting material is extremely limiting, particularly in areas such as the study of progenitor cells in early development and
tumor stem cell biology.
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Introduction

Recently, there has been growing interest in obtaining gene

expression profiles from single cells, as it has become increasingly

evident that the heterogeneity present in cell populations is such

that population-based transcriptional profiles may not reflect the

regulatory networks functional at the individual cell level [1,2].

Applications for single cell gene expression profiling include

lineage determination in early development and organogenesis,

including embryogenesis [3,4], neuronal [5–8] and glial [9] cell

differentiation, hematopoietic [10,11], bone marrow stromal [12],

epidermal [13], heart [14,15] and pancreatic [16] stem cell

biology. Apart from facilitating cell lineage mapping an additional

key utility of single cell transcriptomics is in clinical diagnostics,

particularly the identification of gene expression signatures in

circulating tumor cells for use as prognostic markers for metastatic

tumors [17] and treatment response [18].

The analysis of single cancer cells can potentially overcome the

shortcomings of tumor heterogeneity and help pinpoint driver

mutations that spur the initial development of tumors, and identify

which mutations lead to metastasis, cancer progression and

resistance to therapy. However, a key technological challenge in

the transcriptional profiling of single cells is that most whole-

genome amplification protocols suffer from significant amplifica-

tion bias. While there have been several recent advancements in

the capture and isolation of single cells, such as cell picking [19,20]

and microfluidic [1,17,21] devices, there remains a need for the

development of high-throughput, whole-genome gene expression

assays for single cells. Example of previously reported assays aimed

at attempting to overcome the limitation of single cell or near

single cell quantities of starting material [for reviews see [4,22,23]]

include terminal continuation [24], homomeric tailing [3,10],

Ribo-SPIA technology (Ovation Pico WTA and WT-Ovation

One-Direct Amplification Systems) [25,26], TransPlex Whole

Transcriptome Amplification technology (Pico Profiling) [27],

template switching [28,29], multiple displacement amplification

(total transcript amplification [30]) and linear antisense RNA

amplification [6,8].
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The underlying RNA or cDNA amplification strategies

employed in most of these studies include either linear antisense

RNA amplification or homomeric/TdT tailing followed by

exponential amplification. While the former approach has been

a mainstay for amplifying nanogram amounts of total RNA, there

have been relatively few studies in which single cell quantities have

been assayed [6,8]. Reported disadvantages to this approach

include inefficiencies during second strand cDNA synthesis and

purification [31], a multi-day workflow [32], time-dependent RNA

degradation [33], as well as transcript representation bias [34] all

of which are associated with successive rounds of amplification.

Variations of the latter approach include A- [3,4] or G-tailing [10]

in order to tag the 39 end of the first cDNA strand for global PCR

amplification. A third strategy by which cDNA may be tagged

makes use of a reverse transcriptase with terminal transferase

activity facilitating template-switching [20,28,35,36]. Other op-

tions by which the 39 termini of cDNAs may be tagged, include

linker/adaptor ligation [37] or the use of a terminal-tagging oligo

(TTO) [38]. The linker/adaptor ligation protocol generally

requires several additional enzymatic and washing steps, and is

therefore not only prone to loss of material, but also cross-

contamination. Because both of these methods currently require

nanogram quantities of total RNA as inputs, it is likely that the

efficiency with which mRNAs are converted into tagged and

amplifiable cDNA templates is lower than either the template-

switch or homomeric/TdT tailing methods. Recently, a Q29 DNA

polymerase-based multiple displacement amplification method

was described in which the transcriptomes of single bacterial cells

were profiled, yielding assay reproducibilities of R2,0.80 [30].

While, currently this isothermal technology is adapted for

prokaryotes, the authors suggest that it may be modified for use

within a eukaryotic context.

Many of these approaches have not been widely adopted either

because they suffer from amplification bias, are not sufficiently

scalable or robust for high-throughput applications, are not

suitable in eukaryotic contexts, or a combination of these factors.

Here we describe a template-switch-based high-throughput

method that is capable of generating robust whole-genome gene

expression profiles at the single cell level.

Results

The pre-amplification method described here exploits the

template switching ability of some reverse transcriptases which

allows the 39 tagging of cDNA, thereby facilitating the incorpo-

ration of universal PCR primer sites at both ends of the

synthesized cDNAs (Fig. 1). Here we report on the comprehensive

characterization of the performance of our single cell gene

expression assay, termed Whole-Genome Gene Expression in

Single Cells (WG-XSC), using picogram quantities of total RNAs,

as well as a variety of different single cell types. We describe the

utility of the WG-XSC assay in the transcriptional profiling of

single cells and low input material, for which existing conventional

methods are not sufficiently sensitive.

Pre-Amplification Assay Optimization
Previous template-switching-based amplification protocols uti-

lized oligo-dT-based priming for cDNA synthesis followed by a

single-phase PCR amplification reaction [20,28,35,36]. We made

several modifications to these specific steps that led to substantial

improvements in both the cDNA yield and representation of single

cell quantities of starting material. These improvements are

summarized in Table 1.

We first assessed the impact of different cDNA priming methods,

during the reverse transcriptase step, on the performance of our

assay. Here we evaluated three conditions, namely: oligo-dT (T30),

oligo-dT + random hexamer (T30+N6) or oligo-dT + random

nonamer (T30+N9). Replicate inputs of 50 pg H9 cell total RNA

were used for all tested priming conditions after which pre-amplified

products were used as inputs for the 24 K WG-DASL Assay. While

typical assay reproducibilities of R2,0.37 were obtained for the

T30 condition, improved self-correlations of R2,0.63 were

observed for both the T30+N6 and the T30+N9 priming conditions

(Table 1). We also obtained a concomitant 58% increase in the

Figure 1. Pre-amplification scheme. (1) First strand cDNA synthesis is primed with tagged oligo-dT and random 9-mer primers. The tagged oligo-
dT primer contains a VN anchor followed by a T-30 stretch with a 59 PCR tag. The tagged random 9-mer consists of a 9-mer followed by the identical
59 PCR tag. (2) Upon reaching the 59 terminus of the mRNAs, the reverse transcriptase, via its terminal transferase activity, adds a few nucleotides
(predominantly deoxycytidine) to the 39 end of the newly synthesized cDNAs. (3) The template-switch primer, which consists of the same 59 PCR tag
as well as a 39 riboguanine stretch, anneals via GC complimentary base-pairing to the 39 end of the cDNAs, thereby serving as a new template for the
reverse transcriptase. (4) After cDNA synthesis, both ends of the cDNAs now contain the identical PCR tag, allowing exponential amplification of the
entire cDNA population through single primer PCR (5).
doi:10.1371/journal.pone.0030794.g001
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assay sensitivity with the T30 + randomer priming conditions

yielding approximately 10449 and 10332 probes detected (p,0.01)

for the T30+N6 and T30+N9 conditions, respectively, compared

with 6595 detected probes (p,0.01) for the T30 condition (Table 1).

Moreover, raw intensity correlations of the lower 50 pg with the

higher 1 ng input yielded R2,0.69 for both the T30+N6 and the

T30+N9 priming conditions, while yielding R2,0.47 for the T30

condition (Table 1). Our results clearly demonstrate an improve-

ment in the assay performance with the oligo-dT + randomer

compared to the oligo-dT priming.

Previous experiments performed with different numbers of PCR

cycles (15, 18, 21, 24 and 27 cycles) using different RNA inputs

(50 pg and 1 ng) demonstrated that the assay performance

(reproducibility, sensitivity and correlation with higher inputs), was

poorest at the extremes of our chosen cycle ranges (15 and 27), but

optimal at 21 PCR cycles (data not shown). To reduce the impact of

stochastic effects on low copy numbers during the early cycles, we

sought to improve the efficiency and fidelity of amplification by

applying an altered thermal profile for the first few PCR cycles. We

next therefore assessed the effect of two different PCR cycling

profiles on our assay performance, namely a single-phase profile with

an annealing temperature of 65uC, and a 24 cycle, two-phase profile

consisting of an initial five PCR cycles carried out at a lower

annealing temperature (58uC), followed by 19 cycles at a higher

(65uC) annealing temperature (see Materials and Methods for

details). For this experiment, replicate inputs of 50 pg UHR total

RNA were processed using the 24 K WG-DASL Assay. Typical

results showed superior performance using the two-phase condition,

as assessed by measures of reproducibility (from R2,0.37 for the

one-phase and R2,0.48 for the two-phase conditions) and sensitivity

(,6595 probes detected for the one-phase and 8019 probes detected

for the two-phase conditions, p,0.01) (Table 1). This corresponded

to a 22% higher assay sensitivity for the two-phase profile.

Comparing raw correlations between lower 50 pg input RNA

amounts to higher 1 ng inputs, the one-phase and two-phase PCR

conditions yielded R2,0.47 and R2,0.59, respectively (Table 1).

Together these data demonstrate an improved performance of the

two-phase condition as compared with the one-phase profile.

Performance with RNA Inputs and Single Cells
A key performance characteristic of any single cell genomics

assay is its ability to discriminate among different samples at low

input levels. In order to further characterize our assay we used

T30+N9 priming together with the two-phase PCR profile

described earlier to assay two different RNA inputs. Triplicate

aliquots of UHR and BR, each at 10 pg, 50 pg and 1 ng total

RNA were used in conjunction with the 29 K WG-DASL HT

Assay. RNA quality was assessed using the Bioanalyzer 2100 and

yielded RIN values of 9.6 and 9.2 for the UHR and BR samples,

respectively (data not shown). On average, our intra-sample self-

reproducibilities were R2,0.42, R2,0.69 and R2,0.96 for the

10 pg, 50 pg and 1 ng UHR and R2,0.34, R2,0.61 and

R2,0.95 for the 10 pg, 50 pg and 1 ng BR RNA inputs,

respectively (Fig. 2A, Table 1). By contrast, comparisons between

the UHR and BR RNA samples, at the 50 pg input level, yielded

inter-sample correlations of R2,0.39 (Fig. 2A), whereas UHR vs.

BR inter-sample correlations at the 1 ng input level yielded

R2,0.61, suggesting that, based on gene expression profiles, our

assay can reliably differentiate between different low RNA inputs.

Having obtained robust data using picogram quantities of RNA,

we next repeated the experiment, using individual cells as inputs.

Here we used single HeLa and primary brain tumor (BT) cells. As

before, all samples were processed in triplicate. We observed a

similar trend to that obtained for the RNA equivalent inputs, with

intra-sample self-reproducibilities of R2,0.76 (Fig. 2B, Table 1)

and R2,0.74 for the HeLa and BT samples, respectively, while

the inter-sample correlations between the HeLa and BT single cell

samples were lower with R2,0.57 (Fig. 2B). The differences

between the intra- and inter-sample average correlations were

statistically significant as reported by Student’s t-test (intra-sample

HeLa R2 vs. inter-sample HeLa-BT R2, p = 1.34E-7; intra-sample

BT R2 vs. inter-sample HeLa-BT R2, p = 2.80E-6). Apart from

different single cells, we also profiled 5-cell (HeLa) inputs, and

obtained self-correlations of R2,0.88. We also compared the

single cell HeLa and BT expression profiles with that obtained for

50-cell inputs for tumorspheres (TS) and their adherent cell (AC)

counterparts. While the intra-sample correlations for the TS and

AC samples yielded R2 of 0.89–0.95 (Fig. 2B), the inter-sample

correlations between the TS/AC vs. HeLa and the TS/AC vs. BT

cells yielded R2 of ,0.45 and ,0.40, respectively. Together these

results indicate that our whole-genome gene expression assay can

robustly discriminate among different individual cell types.

We next ranked the fold-change differences between the TS and

the AC samples and further analyzed the top 100 over-expressed

Table 1. Values are averages for at least two technical replicates.

Table 1. Optimization of Preamplification Assay

Input Condition Self-Reproducibility (R2)
Correlation
with 1 ng (R2) Sensitivitya

Probe
Concordance (%)b

50 pg UHR total RNAc T30 + one-phase PCR 0.374 0.473 6595 95.9

50 pg UHR total RNAc T30 + two-phase PCR 0.481 0.585 8019 95.1

50 pg H9 total RNAc T30 + N6 + one-phase PCR 0.626 0.695 10449 92.4

50 pg H9 total RNAc T30 + N9 + one-phase PCR 0.627 0.688 10332 92.2

50 pg UHR total RNAd T30 + N9 + two-phase PCR 0.698 0.806 13443 96.6

Single HeLa cellsd T30 + N9 + two-phase PCR 0.757 0.801 11083 97.4

Values shown for the self-reproducibility and correlation are derived from all probes.
aSensitivity is calculated as the number of probes detected at p-value,0.01.
bProbe concordance is calculated as a percentage of the number of probes with matching detected calls at p-value,0.01 between the low (50 pg or single cell) and

standard (1 ng) inputs divided by the total number of probes detected in the lower input.
c24 K WG-DASL.
d29 K WG-DASL HT.
doi:10.1371/journal.pone.0030794.t001
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Figure 2. Raw signal intensity correlations between replicates of low input RNAs and whole cells. (A) 50 pg UHR and BR total RNA and
(B) single HeLa and brain tumor (BT) cells; 50 cell tumorsphere (TS) and adherent cells (AC). Pair-wise scatterplots of at least two replicates for each
input type are shown for all 29 K probes across the full range of raw signal intensities. Correlations are the square of Pearson’s correlation coefficient.
doi:10.1371/journal.pone.0030794.g002
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and 100 under-expressed genes in the tumorspheres relative to

their attached counterpart. Using DAVID [39] we extracted GO

terms and compared the relative frequencies of these terms in each

list to that in the human genome to identify statistically significant

enriched GO terms. Within the over-expressed gene list several

transcription factors such as SMAD2, SHOC2 and KLHL7 were

included under the enriched GO term ‘‘nucleus’’ (p = 8.71E-3)

consistent with a stem cell (Fig. S1) versus a more differentiated

cellular phenotype. Conversely, for the under-expressed genes

over-represented GO terms included ‘‘cell/biological adhesion’’

(p = 3.83E-5) as well as ‘‘extracellular space’’ (p = 5.34E-3)

suggestive of a cell-matrix adhesion pathway for an attached

(Fig. S1) as opposed to a suspended cell culture.

In order to determine the extent to which the gene expression

profiles obtained at low input levels correlated with those obtained

with higher inputs, we directly compared raw signal intensities

between the lower and higher inputs. Correlations between 50 pg

and 1 ng total RNA typically yielded R2,0.80 (Fig. 3A, Table 1),

whereas correlations between 10 pg and 1 ng total RNA typically

yielded R2,0.59 (Fig. 3B). Single cell correlations with 1 ng total

RNA, derived from a corresponding bulk cell culture, yielded

R2,0.80 (Fig. 3C, Table 1). At p,0.01, we detected ,13443 and

10180 probes for the 50 and 10 pg RNA inputs, respectively,

whilst detecting ,14156 and 11083 probes for the 5-cell and

single cell inputs (Table 1), respectively. This level of sensitivity

represents approximately 77% (50 pg), 58% (10 pg), 80% (5-cell)

and 63% (single cell) of the total number of probes detected in the

higher, standard inputs. Furthermore, when the lists of probes

detected (p,0.01) in the lower inputs were intersected with those

detected in the higher 1 ng inputs, we obtained probe concor-

dance values of ,96.6%, 97.1% and 97.4% for the 50 pg (Fig. 3D,

Table 1), 10 pg (Fig. 3E) and single HeLa cells (Fig. 3F, Table 1),

respectively. The percentage of false positive probes detected in

the lower inputs was ,2% of the total number of probes detected

in the higher standard inputs. Taken together these results

demonstrate that our assay is sufficiently sensitive to reliably

detect, in low inputs, most of the genes that are detected at

standard higher inputs, and that the expression profiles derived

from these lower inputs accurately recapitulate those obtained in

higher inputs.

Discussion

Over the last few years there have been several reported studies

on either single cell gene expressing profiling using low gene

density (1–100) assays [1,2,16,40–42], or inputs of small

populations of cells (10–150) [27,43] or 100 pg–1 ng total RNA

[44–46] at the whole transcriptome level. Very few genome-wide

studies have been reported in which the assay performance has

been rigorously characterized using whole single cells or RNA

equivalents as inputs [3,4,10,47].

Our WG-XSC assay is highly reproducible, typically yielding

R2,0.76 and ,0.69 for single cell and 50 pg RNA inputs,

respectively. The transcript representation as assessed by the

correlation between lower inputs and larger standard inputs

yielded R2,0.80 and ,0.81 for single cell and 50 pg RNA inputs,

respectively. Of the few microarray-based single cell transcrip-

tional studies with self-correlation metrics the reported R values

range between 0.73–0.91 [3,10,48]. Exact comparisons between

these studies and the current study is challenging as either the

underlying experimental designs differ [10] or the analysis

methods are different [3,10,48]. A recent mRNA-Seq study in

which single mouse oocytes were assayed, reported assay

reproducibilities of R2,0.97 [4]. It should be noted however that

these cells are atypical in size and therefore are also not directly

comparable with the current study.

Two obvious, but critical steps that could impact levels of

reproducibility and representation include the extent of cell lysis

as well as the efficiency with which low abundance mRNA

molecules are converted to cDNA. In order to minimize the loss

of material, and maximize the synthesis of cDNA in an unbiased

fashion, our protocol specifically incorporates the use of a

Figure 3. Intensity and detected probe concordance comparisons between low and higher 1 ng inputs. Raw signal intensity correlations
between (A) 50 pg (x-axis) and 1 ng (y-axis) UHR total RNA; (B) 10 pg (x-axis) and 1 ng (y-axis) UHR total RNA; (C) single HeLa cell (x-axis) and 1 ng (y-
axis) HeLa total RNA. The overlapping sets of detected probes between the low and higher inputs are shown for both the RNA equivalent (D, E) and
single cell (F) inputs. All probe values shown are at a threshold of p,0.01.
doi:10.1371/journal.pone.0030794.g003
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phase-switch microfluidics device and low-retention plastic-

ware for single cell isolation, oligo-dT and random priming

for cDNA synthesis and a two-phase thermal profile for PCR

amplification.

An additional feature of our approach is the ability to process up

to 96 samples in parallel, thereby greatly reducing the associated

labor costs as well as minimizing variation/bias that may arise

from handling individual samples. This feature is of particular

relevance for single cell expression profiling where substantial

variation in transcript levels among phenotypically identical single

cells has been well documented, thereby necessitating the

simultaneous analyses of large numbers of individual cells [2,20].

In summary, our method facilitates whole-genome gene expression

profiling in contexts where starting material is extremely limiting,

particularly in areas such as the study of progenitor cells in early

development and tumor stem cell biology.

Our high-throughput assay generates whole-genome gene

expression profiles with single cell or low RNA inputs. This robust

and scalable method for profiling a variety of cell types at the

single cell level can be applied to critical questions in a broad

range of areas, including developmental biology and cancer

biology. We have used the technology for gene expression profiling

in circulating tumor cells isolated from prostate cancer and

ovarian cancer patients’ blood, as well as molecular and functional

characterization of early lineage commitment of human hemato-

poietic stem cells (data not shown). The ability to obtain genome-

wide gene expression data on many individual cells in parallel will

be extremely valuable in a variety of contexts, including detailed

molecular lineage tracing studies and clinical studies aimed at

biomarker discovery.

Materials and Methods

RNA Extraction
RNA from the WA09 (H9) [49] human embryonic stem cell line

was extracted using TRIzol (Life Technologies/Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s instructions

after which the precipitated RNA pellet was resuspended in 10 ml

RNase-free water. Commercial RNAs were purchased from the

following vendors, FirstChoice Human Cervical Adenocarcinoma

(HeLa-S3) and FirstChoice Human Brain Reference (BR) (both

from Life Technologies/Ambion, Austin, TX, USA) and Univer-

sal Human Reference (UHR) (Agilent/Stratagene, Santa Clara,

CA, USA). Different inputs, as indicated in the Results section,

were used for each pre-amplification reaction.

Sorting of Cultured Cells with a Phase-Switch
Microfluidics Device

A microfluidics device with a phase-switch feature was used for

isolating individual cells. Briefly, cultured cells were harvested with

trypsinization and washed with PBS, whereafter a single cell

suspension in PBS was load into a phase-switch microfluidics

device for encapsulation of individual cells into droplets. Cells were

encapsulated from the aqueous phase (PBS) into droplets in the oil

phase by either laser-cavitation or T-junction break-up of

immiscible threads as previously described [50]. With optimized

parameters, each droplet contained only one single HeLa.S-Fucci

(RIKEN BioResource Center Cell Bank, Ibaraki, Japan) [51] or

brain tumor (BT) cell. This was visually confirmed under a

fluorescent microscope. This approach minimizes the stress on

sorted cells and facilitates the manipulation of single cells in

droplets. Individual sorted cells were aliquoted in #1 ml Single cell

Lysis Buffer (SLB, Illumina, Inc.).

Culture of Tumorspheres and Adherent Cells
An ovarian cancer cell line, RMG1 [52] was cultured in three

T-150 flasks until 80–90% confluency in M199/MCDB105

medium (Sigma, St. Louis, MO, USA) supplemented with 5%

FBS (HyClone Laboratories Ltd., Logan, UT, USA), penicillin

(100 U/ml), and streptomycin (100 mg/ml). To culture under stem

cell conditions [53] cells were trypsinized and then resuspended in

DMEM/F12 medium supplemented with 5 mg/ml insulin (Novo

Nordisk Inc., Princeton, NJ, USA), 20 ng/ml epidermal growth

factor (R&D Systems, Inc., Minneapolis, MN, USA), 10 ng/ml

basic fibroblast growth factor (Invitrogen, Carlsbad, CA, USA),

0.4% bovine serum albumin (BD Falcon; Bedford, MA, USA),

penicillin (100 U/ml), and streptomycin (100 mg/ml) in two

100 mm Ultra Low Attachment plates (Corning, Lowell, MA,

USA) over three weeks. Spheroids were selected using a 40 mm cell

strainer (BD Falcon, Bedford, MA, USA), after which half of the

spheroids were cultured in one 35 mm dish (adherent cells, AC)

and the other half were grown in one well of one 6 well low

attachment plate in stem cell medium (tumorspheres, TS) for two

days. Cells were grown at 37uC in a 5% CO2/air atmosphere. The

brain tumor (BT) cells, derived from U118 human glioblastoma

cells (ATCC HTB-15), were purchased from the ATCC (Rock-

ville, MD, USA) and maintained in DMEM supplemented with

10% fetal bovine serum, glutamine, and penicillin/streptomycin as

recommended by the ATCC.

Cell Lysis, cDNA Synthesis and Pre-Amplification
All cell lysis and cDNA reactions were performed using 0.2 ml

Maxymum Recovery PCR tubes (Axygen, Union City, CA, USA).

The cell lysis, reverse transcription, template switching and pre-

amplification reactions were all performed in a single tube. Briefly,

for cell lysis, 1.8 ml SLB was added directly to the isolated single

cell. Tubes were placed in a thermocycler and heated to 72uC for

3 min, followed by five min at 4uC. After cell lysis, 3.2 ml Single

cell cDNA Synthesis Buffer (SCB, Illumina, Inc.) was added to the

lysed single cell. The reverse transcription and template switching

reactions were performed at 42uC for 60 min, followed by a

10 min 70uC inactivation step. After cDNA synthesis 32 ml of

Single cell PCR Mix (SPM, Illumina, Inc.) was added directly to

the unpurified products followed by amplification using a PCR

cycling profile which consisted of an initial denaturation of 95uC
for 1 min, followed by 5 cycles of (95uC for 20 sec 58uC for 30 sec

and 68uC for 3 min), 9 cycles of (95uC for 20 sec, 65uC for 30 sec

and 68uC for 3 min), 10 cycles of (95uC for 30 sec, 65uC for 30 sec

and 68uC for 3 min+6 sec/cycle) and 1 cycle of 72uC for 10 min.

For cell-equivalent RNA inputs, the SLB and SCB were added

directly to the RNA (the cell lysis step was omitted) and were

reverse-transcribed and pre-amplified in the identical manner to

that described for the cell lysates.

Whole-Genome DASLH Assay
For whole-genome gene expression analysis, we used either the

Whole-Genome DASL Assay or the Whole-Genome DASL HT

Assay, an updated version of the original Whole-Genome DASL

Assay [54]. Briefly, the WG-DASL assay probes ,24 K targets

(,18 K unique genes) and uses the HumanRef-8 v3 BeadChip,

while the WG-DASL HT Assay interrogates ,29 K targets

(,21 K unique genes), based on content derived from the

National Center for Biotechnology Information Reference Se-

quence Database (Release 98, November 2009) and uses the

Human HT-12 v4 BeadChip. For both 24 K and 29 K assays we

used 10 ml of the 37 ml (27%) pre-amplified cDNA product which

we annealed directly to the 24 K or 29 K oligo pool and then

proceeded exactly as previously described [54].

Whole-Genome Gene Expression of Single Cells
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Microarray Data Analysis
Unless otherwise stated, all data were analyzed in an un-

normalized, raw state. All individual samples were assayed a

minimum of two times. After scanning, intensity data were

imported into GenomeStudioH v2.0 where the data quality was

assessed using several assay controls. Detection p-values were

computed using several hundred negative controls to determine

gene expression detection limits. Assay performance metrics are

described further in the Results section. All of the microarray data

are MIAME-compliant (http://www.mged.org/Workgroups/

MIAME/miame.html) and have been submitted to GEO

(Accession Number: GSE34365). Over-representation analysis of

differentially expressed genes was performed using DAVID [39],

which reports functional gene categories as statistically significant

gene ontology (GO) terms.

Supporting Information

Figure S1 Ovarian cancer cells (RMG1) were cultured in
stem cell media. (A) a spheroid in an ultra-low attachment

plate, (B) a spheroid in a tissue-culture treated plate, after two days

in a regular plate. Scale bar = 90 mm.

(PDF)

Acknowledgments

We would like to thank Shujun Luo and Jerry Wang at Illumina, Inc. for

helpful discussions.

Author Contributions

Conceived and designed the experiments: CSA MB J. Chen JBF JSF FK

MR. Performed the experiments: CSA J. Chen BK. Analyzed the data:

CSA J. Chen JBF. Contributed reagents/materials/analysis tools: GYC

J. Chien LCL SL SVN TO JFZ. Wrote the paper: CSA JBF.

References

1. Warren L, Bryder D, Weissman IL, Quake SR (2006) Transcription factor

profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl

Acad Sci U S A 103: 17807–17812.

2. Diercks A, Kostner H, Ozinsky A (2009) Resolving cell population heteroge-

neity: real-time PCR for simultaneous multiplexed gene detection in multiple

single-cell samples. PLoS One 4: e6326.

3. Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, et al. (2006) An improved

single-cell cDNA amplification method for efficient high-density oligonucleotide

microarray analysis. Nucleic Acids Res 34: e42.

4. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. (2009) mRNA-Seq

whole-transcriptome analysis of a single cell. Nat Methods 6: 377–382.

5. Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone

receptors in mammals. Cell 83: 195–206.

6. Kamme F, Salunga R, Yu J, Tran DT, Zhu J, et al. (2003) Single-cell microarray

analysis in hippocampus CA1: demonstration and validation of cellular

heterogeneity. J Neurosci 23: 3607–3615.

7. Esumi S, Wu SX, Yanagawa Y, Obata K, Sugimoto Y, et al. (2008) Method for

single-cell microarray analysis and application to gene-expression profiling of

GABAergic neuron progenitors. Neurosci Res 60: 439–451.

8. Morris J, Singh JM, Eberwine JH (2011) Transcriptome analysis of single cells.

J Vis Exp.

9. Koirala S, Corfas G (2010) Identification of novel glial genes by single-cell

transcriptional profiling of Bergmann glial cells from mouse cerebellum. PLoS

One 5: e9198.

10. Hartmann CH, Klein CA (2006) Gene expression profiling of single cells on

large-scale oligonucleotide arrays. Nucleic Acids Res 34: e143.

11. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, et al.

(2011) Densely interconnected transcriptional circuits control cell states in

human hematopoiesis. Cell 144: 296–309.

12. Seshi B, Kumar S, King D (2003) Multilineage gene expression in human bone

marrow stromal cells as evidenced by single-cell microarray analysis. Blood Cells

Mol Dis 31: 268–285.

13. Jensen KB, Watt FM (2006) Single-cell expression profiling of human epidermal

stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence.

Proc Natl Acad Sci U S A 103: 11958–11963.

14. Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, et al. (2006)

Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature

441: 1011–1014.

15. Kim TK, Sul JY, Peternko NB, Lee JH, Lee M, et al. (2011) Transcriptome

transfer provides a model for understanding the phenotype of cardiomyocytes.

Proc Natl Acad Sci U S A 108: 11918–11923.

16. Bengtsson M, Stahlberg A, Rorsman P, Kubista M (2005) Gene expression

profiling in single cells from the pancreatic islets of Langerhans reveals

lognormal distribution of mRNA levels. Genome Res 15: 1388–1392.

17. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, et al. (2007) Isolation

of rare circulating tumour cells in cancer patients by microchip technology.

Nature 450: 1235–1239.

18. Punnoose EA, Atwal SK, Spoerke JM, Savage H, Pandita A, et al. (2010)

Molecular biomarker analyses using circulating tumor cells. PLoS One 5: e12517.

19. Talasaz AH, Powell AA, Huber DE, Berbee JG, Roh KH, et al. (2009) Isolating

highly enriched populations of circulating epithelial cells and other rare cells

from blood using a magnetic sweeper device. Proc Natl Acad Sci U S A 106:

3970–3975.

20. Islam S, Kjallquist U, Moliner A, Zajac P, Fan J-B, et al. (2011) Characterization

of the single-cell transcriptional landscape by highly multiplex RNA-seq.

Genome Res 21: 1160–1167.

21. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, et al. (2009)

Droplet microfluidic technology for single-cell high-throughput screening. Proc

Natl Acad Sci U S A 106: 14195–14200.

22. Brandt SP (2005) Microgenomics: gene expression analysis at the tissue-specific

and single-cell levels. J Exp Bot 56: 495–505.

23. Nygaard V, Hovig E (2006) Options available for profiling small samples: a

review of sample amplification technology when combined with microarray

profiling. Nucleic Acids Res 34: 996–1014.

24. Che S, Ginsberg SD (2004) Amplification of RNA transcripts using terminal

continuation. Lab Invest 84: 131–137.

25. Clément-Ziza M, Gentien D, Lyonnet S, Thiery JP, Besmond C, et al. (2009)

Evaluation of methods for amplification of picogram amounts of total RNA for

whole genome expression profiling. BMC Genomics 10: 246.

26. Morse AM, Carballo V, Baldwin DA, Taylor CG, McIntyre LM (2010)

Comparison between NuGEN’s WT-Ovation Pico and one-direct amplification

systems. J Biomol Tech 21: 141–147.

27. Gonzalez-Roca E, Garcia-Albeniz X, Rodriguez-Mulero S, Gomis RR,

Kornacker K, et al. (2010) Accurate expression profiling of very small cell

populations. PLoS One 5: e14418.

28. Kapteyn J, He R, McDowell ET, Gang DR (2010) Incorporation of non-natural

nucleotides into template-switching oligonucleotides reduces background and

improves cDNA synthesis from very small RNA samples. BMC Genomics 11:

413.

29. Plessy C, Bertin N, Takahashi H, Simone R, Salimullah M, et al. (2010) Linking

promoters to functional transcripts in small samples with nanoCAGE and

CAGEscan. Nat Methods 7: 528–534.

30. Kang Y, Norris MH, Zarzycki-Siek J, Nierman WC, Donachie SP, et al. (2011)

Transcript amplification from single bacterium for transcriptome analysis.

Genome Res 21: 925–935.

31. Zhao H, Hastie T, Whitfield ML, Borresen-Dale AL, Jeffrey SS (2002)

Optimization and evaluation of T7 based RNA linear amplification protocols for

cDNA microarray analysis. BMC Genomics 3: 31.

32. Petalidis L, Bhattacharyya S, Morris GA, Collins VP, Freeman TC, et al. (2003)

Global amplification of mRNA by template-switching PCR: linearity and

application to microarray analysis. Nucleic Acids Res 31: e142.

33. Spiess AN, Mueller N, Ivell R (2003) Amplified RNA degradation in T7-

amplification methods results in biased microarray hybridizations. BMC

Genomics 4: 44.

34. Subkhankulova T, Livesey FJ (2006) Comparative evaluation of linear and

exponential amplification techniques for expression profiling at the single-cell

level. Genome Biol 7: R18.

35. Schmidt WM, Mueller MW (1999) CapSelect: a highly sensitive method for 59

CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of

mRNAs. Nucleic Acids Res 27: e31.

36. Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse

transcriptase template switching: a SMART approach for full-length cDNA

library construction. Biotechniques 30: 892–897.

37. Froussard P (1993) rPCR: a powerful tool for random amplification of whole

RNA sequences. PCR Methods Appl 2: 185–190.

38. Sooknanan R, Pease J, Doyle K (2010) Novel methods for rRNA removal and

directional, ligation-free RNA-seq library preparation. Nature Methods 7: i–ii.

39. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:

44–57.

40. Peixoto A, Monteiro M, Rocha B, Veiga-Fernandes H (2004) Quantification of

multiple gene expression in individual cells. Genome Res 14: 1938–1947.

Whole-Genome Gene Expression of Single Cells

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e30794



41. Gibson JD, Jakuba CM, Boucher N, Holbrook KA, Carter MG, et al. (2009)

Single-cell transcript analysis of human embryonic stem cells. Integr Biol (Camb)
1: 540–551.
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